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Introduction

In normal human body cells, glucose is converted to pyruvate that 
enters the tricarboxylic acid (TCA) cycle aerobically. The elec-
tron transport chain, also known as the respiratory chain, is found 
in the mitochondria of cells and is the final common pathway by 
which electrons are transferred to oxygen. The energy released in 
the process phosphorylates adenosine diphosphate (ADP) stored 

as adenosine triphosphate (ATP). This process, known as oxidative 
phosphorylation, generates large amounts of energy.1,2

In addition to that energy, cancer cells require energy for rapid 
cell division. Therefore, tumor cells reprogram their cellular me-
tabolism, and published literature to date indicates that this repro-
gramming involves virtually all facets of metabolism, including 
that of carbohydrates, proteins, and fats. This effect in cancer was 
observed almost 100 years ago by Otto Warburg, a Professor of 
Biochemistry in Germany, who studied tumors in vitro and showed 
that tumors preferentially ferment glucose to lactic acid.3 In a se-
ries of experiments, Warburg showed that from 100 cc blood, tu-
mors consume 70 mg of glucose, split 66% of that glucose into lac-
tate, and oxidize the remainder (34%) to carbon dioxide and water. 
Warburg showed that both fermentation and respiration need to be 
blocked to kill the tumor cells and that blocking only one of these 
processes is not sufficient for that purpose.3

Based on decades of research and after describing the chemical 
reaction in which ADP is phosphorylated to ATP, in 1956, War-
burg described a clear difference between normal cells that respire 
aerobically using oxygen and cancer cells that use fermentation as 
the preferential energy-producing process even in the presence of 
oxygen.4 In that highly cited paper, Warburg described two steps 
in the origin of cancer cells, initiated by the irreversible damage 
of respiration followed by fermentation, with the latter occurring 
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after a latent period that leads to cancer, and which does not occur 
in healthy regenerating liver.4 However, it should be noted that, in 
a subsequent publication in 1962, Warburg revised his earlier con-
clusion of impaired respiration to insufficient respiration in cancer, 
as reviewed by Koppenol et al.5

Numerous published articles have discussed the Warburg ef-
fect5–8 and the significant role of oxidative phosphorylation and 
mitochondria in cancer.9 Normal cells generate up to 32 molecules 
of ATP by complete oxidation of one glucose molecule via oxida-
tive phosphorylation.1 Notably, in the same time taken by a normal 
cell to complete one cycle of oxidative phosphorylation, cancer 
cells generate a much greater number of ATP molecules using only 
the glycolytic pathway when enough glucose is present.5,8 Impor-
tantly, the intermediate products of glycolysis lead to biosynthetic 
pathways that are crucial for the development and proliferation of 
cancer cells.6

Much has been learned in the last two to three decades about the 
regulation of glycolysis after the discovery of hypoxia inducible 
factor 1 (HIF1), which regulates glycolysis in hypoxic states and 
in cancer10–12 and is overexpressed in many types of cancer.13 The 
metabolic phenotype of tumor cells depends on both intrinsic and 
extrinsic variables. These include molecular genetic abnormali-
ties in tumor suppressor genes or oncogenes, which may alter the 
cell metabolic pathways, and the state of the microenvironment in 
which the tumor cells live. The latter variables include hypoxia, 
pH, and glucose levels.7,14 Ultimately, metabolic reprogramming 
in cancer meets three essential needs: the increased cellular energy 
demands, the need to synthesize additional cellular constituents, 
and the need to maintain the redox balance.14

The consumption and expenditure of energy are intricately re-
lated to excess body weight, including overweight and obesity, 
defined as a body mass index (BMI) ≥ 25 kg/m2 and ≥ 30 kg/m2, 
respectively. Since 1975, excess body weight has increased glob-
ally, primarily due to increased consumption of energy sources 
(food and drink) and increased physical inactivity. Notably, these 
increases parallel a global increase in cancer burden.15 As reported 
by an extensive global analysis that included 1,698 population-
based data sources, with > 19.2 million adults (9.9 million men, 
9.3 million women) in 186 countries, the age-standardized preva-
lence of obesity increased from 3.2% (2.4–4.1) in 1975 to 10.8% 
(9.7–12.0) in 2014 in men, and from 6.4% (5.1–7·8) to 14.9% 
(13.6–16.1) in women.16 Alarmingly, obesity is estimated to affect 
1 in 2 adults in the USA by 2030.17

The dietary consumption of fructose has also increased, par-
ticularly after the introduction of high fructose corn syrup in the 
1970s.18–20 Substantial accumulated published evidence indicates 
that excess consumption of fructose is associated with increased 
occurrence of obesity, cardiovascular disease, diabetes, hyper-
tension, hyperuricemia, metabolic syndrome, and non-alcoholic 
fatty liver disease (limited references cited due to space).18–25 
Fructose is also produced endogenously from glucose in hyper-
glycemic states.26 Further, excess intake of fructose-sweetened 
beverages was shown to be associated with an increased cancer 
risk in a prospective 2009–2017 French study with a median 
follow-up of 5.1 years.27 Another study reported significantly 
higher risks of breast and prostate cancer and trends for high-
er colorectal and pancreatic cancer risk in a 2003–2020 meta-
analysis.28 Excess fructose intake in African American women 
has been correlated with a significantly increased risk of ovarian 
cancer.29 Notably, fructose metabolism is associated with ag-
gressive cancer in the brain,30,31 pancreas,32 colon,33–35 liver,36,37 
ovary,38 breast,39 prostate,40 kidney,41,42 and lung43 in pre-clinical 
and clinical studies30–43 and an aggressive breast cancer cell line 
from an African American woman.44

Acute myeloid leukemia (AML) is a lethal hematologic malig-
nancy with an increasing incidence and prevalence. The underly-
ing molecular genetics in AML have been studied intensively in 
the last two decades,45,46 with specific targeted drugs available 
since 2017.47 AML is characterized by a clonal proliferation of 
immature myeloid cells, which arise from leukemic stem cells 
(LSC) in the bone marrow (BM). Obesity is associated with AML, 
as reviewed herein, but specific studies of excess fructose (due to 
dietary intake or endogenous production) in AML have not yet 
been performed.

Here, the physiologically inter-linked metabolism of glucose 
and fructose are described, including aspects unique for fructose 
metabolism that are pathogenetic, followed by our current under-
standing of fructose metabolism and AML. The purpose of this 
study was to determine, for the first time, if excess fructose intake 
can lead to the initial cellular event that causes AML and, subse-
quently, to provide insight into novel therapies for AML.

Dietary fructose intake, absorption, and metabolism

Glucose is the preferred energy source for human cells and is avail-
able through various carbohydrate dietary sources, including mon-
osaccharides, disaccharides, and polysaccharides. If dietary intake 
is insufficient, the body’s glycogen stores supply glucose, and 
when glycogen is depleted, glucose is synthesized (gluconeogen-
esis) from proteins. The main dietary sugars include glucose, fruc-
tose, sucrose, lactose, and maltose.19 Lactose is composed of glu-
cose and galactose, which are absorbed as glucose after galactose 
is converted to glucose. Maltose is composed of two molecules of 
glucose and is absorbed similarly to glucose.1,2,19 Therefore, sugar 
metabolism to be considered for both healthy and diseased cells is 
primarily that of glucose and fructose.

Dietary fructose intake

Fructose is present in several types of foods, including sugars, hon-
ey, fruits, and some vegetables (food content in cited reference).18 
In most foods, fructose occurs naturally in conjunction with glu-
cose and the disaccharide, sucrose, which is composed of equimo-
lar glucose and fructose.18 Man-made high fructose corn syrup, 
introduced in the USA in 1970s, most commonly includes 55% 
or 42% fructose.19 In a span of three decades, 1970 to 2000, there 
was a 25% increase in the availability of sweeteners in the USA, 
which are comprised of approximately 50% fructose.19 During 
1975–1990, the consumption of fructose increased by ten-fold.18 
In a survey-based study during 1994–1996, the average individual 
intake of added sugars was 79 gm/day (or 316 kcal/day), with half 
of that comprised of fructose.19,20 Importantly, the intake of added 
sugars was 137 gm/day (548 kcal) for the top one-third and 178 
gm/day (712 kcal/day) for the uppermost 10% of sugar-consum-
ers.19 Carbonated beverages provide approximately 50% of cal-
ories from fructose,18 and consumption of soft drinks increased 
from approximately 2/week in 1947 to 2/day in 2000 in the USA.20

In 2008, fructose consumption accounted for about 330–380 
kcal/day, corresponding to 17–20% of the energy intake in the av-
erage American diet,48 higher than the 2015 World Health Organi-
zation recommended upper level of 10% of daily energy intake of 
total added sugars.49 Interestingly, the sugar consumption habits 
of some populations might explain why African Americans have 
higher rates of obesity, hypertension, diabetes, renal, and cardiac 
diseases.21
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Dietary sugar absorption

Monosaccharides are transported across human cell membranes 
by the glucose transporter (GLUT) family of integral membrane 
transporter proteins. These include 14 proteins with different tissue 
localization and substrate specificities (reviewed in the cited refer-
ences).50,51 The solute carrier family 2 (SLC2) genes encode for the 
respective GLUT proteins. One or more of these proteins is present 
in all cells in the human body, with glucose transported by 11 of 
14 proteins under experimental conditions, likely due to the criti-
cal need for glucose by human cells.51 GLUT1-5 appears to be the 
most studied and involved in glucose and fructose transport across 
cell membranes.50 The SLC2A1 gene encodes for GLUT1, a pri-
mary glucose transporter expressed in many cell types, including 
erythrocytes and brain. Messenger RNA homologous to GLUT1 
mRNA was detected in cell lines for AML (K562) and human co-
lonic adenocarcinoma (HT-29) and in kidney disease in 1985.52

The GLUT5 protein, encoded by SLC2A5 located on the short 
arm of chromosome 1p36.2, is the primary transporter for fructose 
and is expressed in the small intestine, testes, kidneys, adipose tis-
sue, skeletal muscle, and brain.50,51 GLUT2, encoded by SLC2A2, 
has a low affinity for glucose, galactose, mannose, and fructose 
and is expressed in the liver, absorptive intestine, kidney, pancreas, 
and brain.51 Fructose is absorbed in the jejunum through GLUT5 
on the luminal cell surface, then into the blood via GLUT2, and 
metabolized primarily in the intestine, liver, kidneys, and adipose 
tissue.48,53

Fructose metabolism

It is critical to remember that although glucose and fructose are 
both 6-carbon sugars with the same chemical composition, their 
metabolism differs.1,2,18,19,21,22 In contrast with glycolysis, fructose 
metabolism is not regulated by insulin and consumes ATP, leading 
to de novo lipogenesis. Fructose is unique among all sugars in that 
it generates uric acid leading to hyperuricemia,21,22 which further 
increases fructolysis. Our current understanding of fructose me-
tabolism and the inter-linked glucose metabolism in normal cells, 
based primarily on studies in non-proliferating cells (including the 
steps for lipogenesis from fructose) is depicted in Figure 1.

Figure 2, also in normal cells, shows the pentose phosphate 
pathway (PPP) and the serine synthesis pathway, which require 
intermediate glycolysis metabolites as substrates for cellular bio-
synthesis. Interestingly, fructose directs the intermediate products 
of glycolysis, as shown by tracer studies, to enter the one-carbon 
serine pathway instead of the TCA cycle, which then facilitates 
fructose-induced lipogenesis.54

Many proteins regulate the pathways of glycolysis, with HIF1 
alpha (HIF1-α) as a master regulator.10–13 HIF1 is a heterodimeric 
protein regulated by cellular oxygen tension and is composed of 
an oxygen-dependent subunit, HIF1-α, and a constitutively pre-
sent subunit, HIF1 beta. When O2 levels are sufficient, HIF1-α is 
rapidly degraded due to hydroxylation of the conserved proline 
residues in the HIF1-α subunit and binding of HIF1-α to the von 
Hippel-Lindau tumor suppressor protein, followed by polyubiqui-
tination and proteasomal degradation of HIF1-α. The hydroxyla-
tion of HIF1-α requires molecular oxygen. Therefore, in hypoxic 
states, HIF1-α is stabilized, accumulates, and translocates to the 
nucleus for subsequent events that lead to the transcription of 
genes that promote adaptation to hypoxia. HIF1-α promotes gly-
colysis and suppresses oxidative phosphorylation in hypoxic states 
and regulates several glycolytic pathway enzymes, as previously 

reviewed.10,12

The carbohydrate response element binding protein (ChREBP) 
is a transcription factor present in the intestine and liver that reg-
ulates glycolysis, fructolysis, the PPP, and de novo hepatic lipo-
genesis. Significantly, Chrebp-deficient mice cannot metabolize 
fructose.55 Recently, in vivo isotope tracing demonstrated that di-
etary fructose led to acetyl coenzyme A (CoA) production directly 
from acetate produced by gut microbiota; ChREBP also converts 
microbiota-derived acetate to acetyl CoA for lipogenesis.56 While 
it is known that ChREBP regulates de novo lipid metabolism from 
fructose via these pathways, the effect of suppressing ChREBP on 
lipogenesis is currently unknown.57

Obesity is associated with AML

The absence of body fat is currently understood to prevent cancer 
involving the gastric cardia, esophagus (adenocarcinoma), colo-
rectum, liver (hepatocellular), pancreas, uterine endometrium, 
ovary, breast (post-menopausal), kidney, meninges (meningioma), 
and multiple myeloma.58 Indeed, a multi-institutional, randomized 
clinical trial in diabetic, obese individuals showed that intensive 
lifestyle intervention with weight loss reduced the incidence of 
obesity-related cancers by 16%.59 However, the absence of obe-
sity as a preventive AML-causative factor is currently unknown. 
The known causative agents for AML include tobacco smoking, 
exposure to various chemicals, radiation, and cytotoxic therapies.

Epidemiology of AML

In the USA, the incidence of AML increased from 3.43 per 100,000 
per year in 1973 to at least 4.2 per 100,000 per year in 2016.60 In 
195 countries, the global burden of AML increased significantly 
from 1990 to 2017.61 Four main risk factors were described for 
AML-related mortality, including smoking and increased BMI as 
the first and second most significant factors, respectively. AML 
incidence rose in resource-rich countries and south Asia, with the 
highest incidences of AML in India, China, and the USA in 1990 
and 2017.61 In parallel, there was a significant increase in the prev-
alence of overweight men and women in China and India from 
1975 to 2014.16 However, India and China also had the highest 
and second highest prevalence of underweight men and women 
in 1975 and 2014.16 Whether AML prevalence increased only in 
the obese or also in underweight individuals would require further 
study.

Obesity in AML

Active smoking and increased BMI were positively associated 
with AML in a large Canadian population-based study with 1,068 
incident adult leukemia cases, including 358 AML and 5,034 
healthy controls, with cases identified by provincial cancer regis-
tries in a 1994–1997 database. In that study, there was no leukemia 
risk with fruit and vegetable intake (by dietary servings/week in a 
self-reported questionnaire).62

In 2007, Larsson et al. analyzed nine cohort studies between 
1966–2007 that had prospectively evaluated the relative risk of 
developing leukemia among overweight and obese individuals.63 
Four of those nine cohorts from Norway, Sweden, and the USA 
included a total of 4,804 specified AML patients, among whom 
there was an overall increased [1.52; 95% confidence interval (CI) 
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Fig. 1. Fructose metabolism in normal, non-proliferating cells showing the inter-connected glycolytic pathway with the tricarboxylic acid cycle and the hepatic 
lipogenesis pathway. Conceptually, this figure shows the pathways that underlie the ability of fructose to provide abundant energy for malignant cells. The figure 
shows (a) fructose metabolism after dietary absorption of fructose in the small intestine, including hepatic lipogenesis, (b) the pathways that link the metabolism 
of fructose with the glycolysis pathway, and (c) the mitochondrial TCA cycle with the electron transport chain. The TCA cycle requires oxidized nicotinamide adenine 
dinucleotide (NAD+) from the electron transport chain (not illustrated). The electron transport chain requires oxygen as the final oxygen acceptor, and therefore, 
indirectly, the TCA cycle requires oxygen. In contrast, the glycolysis pathway does not require oxygen. The three regulatory steps for glycolysis are catalyzed by 
hexokinase, phosphofructokinase 1, and pyruvate kinase. Fructose can also be generated endogenously from glucose in hyperglycemic conditions through the 
polyol pathway in the liver, wherein sorbitol dehydrogenase catalyzes the conversion of sorbitol to fructose. Like glucose, fructose must first undergo phosphoryla-
tion to enter the cellular metabolic pathways. In the liver, fructose is metabolized to fructose 1-phosphate, which is cleaved by aldolase B to glyceraldehyde and 
dihydroxyacetone phosphate that enter the glycolysis pathway. Significantly, accumulated ATP inhibits glycolysis with phosphofructokinase 1 enzyme activity as 
the most important rate-limiting step for glycolysis, which is bypassed by fructokinase, leading to rapid fructose metabolism. If fructose is in excess, de novo lipo-
genesis occurs in the liver, with the steps shown in the figure. The glycerokinase enzyme, which phosphorylates glycerol to glycerol 3-phosphate in the fructolysis 
pathway, is present in the liver and absent in adipose tissue. Glycerol 3-phosphate leads to the synthesis of triacylglycerol and phospholipids (latter not shown). The 
conversion of glycerol 3-phosphate to triacylglycerol requires fatty acyl coenzyme A synthetase (also known as thiokinase) to convert acetyl coenzyme A to fatty 
acyl coenzyme A, followed by the addition of three acyl groups by acyltransferase and removal of the phosphate group by phosphatase. Triacylglycerols comprise 
the primary constituent of very low-density lipoproteins in the liver and are stored in adipose tissue. Enzymes are shown in blue text. PFK1, phosphofructokinase 
1; PFK2, phosphofructokinase 2; CoA, coenzyme A; TCA, tricarboxylic acid; VLDL, very low-density lipoproteins.
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1.19–1.95] relative risk of developing AML with obesity.63 No-
tably, one of those four cohorts represented USA male veterans 
hospitalized with a diagnosis of obesity from 1969–1996, includ-
ing 3,668,486 White and 832,214 Black individuals. In this large 
study with a 27-year follow-up (average 12 years per individual) 
by Samanic et al., the highest relative risk [2.64 (CI 1.80–3.85)] 
was observed in Black men with AML (n = 287), in contrast with 
a relative risk of 1.59 (CI 1.33–1.90) in White men with AML (n = 
1,607);63,64 neither racial nor ethnic origin was described.64

Interestingly, there was no difference in obesity prevalence 
among adult men from different ethnic groups (Mexican Ameri-
can, non-Hispanic White, and non-Hispanic Black) in the civilian 
USA population during 1999–2004.65 Since the Black population 
includes African Americans, the similar obesity prevalence regard-
less of racial/ethnic origin in conjunction with a high risk of AML 
in Black obese men suggests that African Americans could have 
an increased risk of developing AML. Further, studies addressing 
disparities in racial/ethnic origin in AML have primarily examined 
prognostic factors, treatment, and outcomes (citations in refer-

ence).66 Whether the African American population has a higher 
risk of AML remains to be determined.

State-based studies in the USA showed an increased risk or as-
sociation of obesity with AML. In the prospective Iowa women’s 
study of 40,000 primarily White women, aged 55–69 years during 
1986–2001, 74 women developed AML. The risk of AML, with 
a median follow-up of 14.3 years, was higher with overweight or 
obesity and increased with increasing BMI.67 Similarly, a Texas 
case-control study with 638 adult de novo AML patients, includ-
ing 46% women and 636 controls, showed a significantly in-
creased AML risk in women due to obesity [univariate 1.87 (CI 
1.25–2.78); multivariate 1.62 (1.06–2.47)]; obese men also had an 
increased AML risk.68

In a 2016 study of 420 AML, 265 myelodysplastic syndromes 
(MDS), and 1,388 control individuals (98% non-Hispanic White) 
in Minnesota, obesity, but not overweight, was increased in adult 
(age 20–79 years) men and women with AML, and obesity was 
increased in women with MDS.69 The strongest associations were 
in individuals with class II/III obesity (BMI ≥ 35 kg/m2),69 similar 

Fig. 2. Fructose metabolism connected to glycolysis, the pentose phosphate pathway, and the serine synthesis pathway can provide the cellular constitu-
ents essential for malignant cells. Conceptually, this figure shows the pathways in normal cells through which fructose can direct energy towards building 
the structures of the malignant cells. The figure shows the pentose phosphate pathway and the serine synthesis pathway, starting from intermediate prod-
ucts in glycolysis depicted by arrows. The pentose phosphate pathway generates 5-carbon sugars, including ribose 5-phosphate, which serves as a precursor 
for the synthesis of nucleotides, coenzymes, and nucleic acids. In the oxidative part of the pentose phosphate pathway, nicotinamide adenine dinucleotide 
phosphate hydrogen is generated, which reduces glutathione and supports biosynthesis. The serine synthesis pathway generates serine and glycine and may 
also lead to lipogenesis, with that path depicted by arrows. Enzymes are shown in blue text. CoA, coenzyme A; G6PD, glucose 6-phosphate dehydrogenase; 
PFK1, phosphofructokinase 1; PFK2, phosphofructokinase 2; SD, serine dehydratase; TK, transketolase.
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to the Iowa women’s study.67

In contrast, overweight and obesity were both associated with 
an increased incidence of AML [relative risk 1.23; (CI, 1.12–1.35)] 
in a 2017 meta-analysis of 26 studies that included 12,971 AML 
patients, including 866 patients with acute promyelocytic leuke-
mia (APL), a specific genetic subtype of AML.70 Additionally, 
high BMI predicted worse outcomes in APL but not in non-APL 
AML.70 A UK population-based study, including 26 APL and 
1,012 non-APL AML among 5.24 million adults, also showed in-
creased APL risk with obesity [hazard ratio 1.44; (CI, 1.00–2.08), 
per 5 kg/m2 increase in BMI], with similar findings in APL cohorts 
from Spain, Italy, and the USA.71

While obesity is clearly associated with an increased risk of 
AML, as evident from the studies summarized above, the under-
lying mechanisms are unclear for AML. A mechanism involving 
inflammatory mediators for cancer in obesity might be relevant for 
obesity and excess fructose in AML.

Effects of fructose metabolism on AML

A critical difference between glucose and fructose metabolism is 
that only fructose leads to de novo lipogenesis, which implicates 
excess fructose in the pathogenesis of cardio-metabolic diseas-
es.18–25 However, cancer cells, including leukemic cells in AML, 
require sugars, amino acids, and fatty acids to form their cellular 
structures and proliferate. As depicted in Figures 1 and 2, excess 
fructose could provide the required energy and cellular biosynthe-
sis sources to the microenvironment from which cancer cells origi-
nate and grow (if there are no underlying enzymatic deficiencies 
in the individual). In this context, prior and recent studies of AML 
are reviewed in this section.

GLUT5 in cancer and normal tissues

Table 1 summarizes the results from studies that examined GLUT5 
expression in patients with malignant and benign neoplasms from 
various sites compared with normal tissues and cancer cells ver-
sus normal counterparts in cell lines.30,35,38–41,43,72–76 Notably, sev-
eral tumor types were GLUT5 and GLUT2 positive,72 indicating 
fructose uptake by benign neoplastic and cancer cells. Moreover, 
GLUT5 expression in cancer significantly correlated with aggres-
siveness of the malignancy and poor patient prognosis in gliomas 
and carcinomas in the kidney, ovary, lung, prostate, breast, and 
acute leukemias (lymphoid and myeloid), as shown in Table 1.

Interestingly, recent evidence from 13 different cell lines from 
five different originating tissues showed that the ability to metabo-
lize fructose is not tissue site-dependent, since cells that chronical-
ly live in an environment containing fructose upregulate GLUT5 
and develop the ability to metabolize fructose using hexokinase 
instead of fructokinase.77 In contrast with these in vitro studies, 
genetically deleting fructokinase in mice actually prevented the 
development of metabolic syndrome.78

GLUT5 in AML

A comprehensive metabolomics study of 400 newly diagnosed 
AML patients and 446 age- and gender-matched healthy controls 
from seven hematology centers in China revealed an etiologic role 
of fructose in the origin of AML. Among 47 altered metabolic 
pathways, the results showed a distinct glucose metabolic profile 
for AML with significantly altered metabolites of glycolysis and 

the TCA cycle in conjunction with a decrease in fatty acids re-
quired for leukemic cell synthesis.79 Further, increased glycolysis 
decreased the sensitivity to anti-leukemic therapy in vitro, while 
inhibiting glycolysis suppressed AML cell proliferation and in-
creased cytotoxicity.

Subsequently, in 2016, Chen et al. showed that fructose utili-
zation was increased in four AML cell lines (U937 with CALM/
AF10, OCI-AML3 with mutated NPM1 and DNMT3A, HL-60 
with amplified MYC, and K562 with BCR-ABL) in the absence of 
or low levels of glucose, with increased SLC2A5 and GLUT5 ex-
pression. AML cell proliferation increased in the presence of fruc-
tose, in contrast with normal monocytes that showed little or no in-
creased proliferation with fructose and did not express GLUT5.76 
Notably, AML blast cells showed significantly increased SLC2A5 
expression compared to normal hematopoietic cells, as evidenced 
by gene expression profiling data for sugar transporter genes in 
previous AML datasets (referenced in their publication).76

GLUT5 inhibitors in AML

Several inhibitors of GLUT1 are in development. Most GLUT1 
inhibitors cause cancer cell apoptosis only in synergy with an-
other chemotherapeutic agent; a specific GLUT1 inhibitor is be-
ing studied for breast cancer (see references in cited review).80 
Notably, a specific GLUT5 inhibitor, N-[4-(methylsulfonyl)-
2-nitrophenyl]-1,3-benzodioxol-5-amine (MSNBA), did not affect 
glucose transport by GLUT1-4 or fructose transport by GLUT2 
in humans81 and decreased the viability of colon cancer cells.35 
GLUT5 inhibitors have not yet been studied in AML.

Serine synthesis in AML

Serine is a major source of one-carbon units and is essential for the 
synthesis of proteins, including nucleotides.1 Jeong et al. showed 
that two AML cell lines (MOLM13 for FLT3-ITD AML and K562) 
used fructose at a slower rate than glucose, while two other cell 
lines (THP1 for MLL-AF9 AML and KASUMI for AML1-ETO 
AML) used fructose and glucose similarly.82 The MOLM13 and 
K562 cell lines used hexokinase and not fructokinase in the pres-
ence of fructose, and isotope tracing showed a higher signal for 
glycine and serine, indicating that fructose activated the serine 
synthesis pathway that has glycine as the end-product.82

In the same context, Bjelosevic et al. showed that serine is 
essential for the viability of FLT3-ITD positive AML cells in a 
genetically engineered mouse model with doxycycline-inducible 
FLT3-ITD and MLL-rearranged AML.83 In their transcriptomic 
analysis, FLT3-ITD upregulated the uptake and de novo synthe-
sis of serine. The loss of FLT3-ITD led to a significant reduction 
in one-carbon metabolism and serine and nucleotide biosynthesis. 
Inhibiting FLT3-ITD also markedly reduced glucose incorporation 
into serine and glycine in AML cells.83

Fatty acid metabolism in AML

Fatty acids are absorbed into cells by specific proteins, including 
CD36, activated to acyl-CoA esters and transported by carnitine 
palmitoyltransferase 1 (CPT-1), the carnitine shuttle, into mito-
chondria.1,84 Mitochondrial β-oxidation is the primary pathway for 
fatty acid oxidation (FAO). In humans, three acyl-CoA dehydro-
genases, very long-chain, medium-chain and short-chain, catalyze 
long-, medium- and short-chain acyl-CoA oxidation, respectively. 
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Physiologically, ATP production by FAO is crucial for the heart, 
skeletal muscle, and kidneys.84

Previously, co-cultured AML cells on a mesenchymal stromal 
cell layer were shown to accumulate lactate with decreased pyru-
vate metabolism, consistent with the Warburg effect, which was 
mediated by mitochondrial uncoupling.85 The latter is a process 
wherein ATP generation uncouples from the electron transport 
chain, which occurs physiologically in mammals for cold acclima-
tization and is mediated by uncoupling proteins. In that study, the 
co-cultured AML cells expressed mitochondrial uncoupling pro-
tein 2 (UCP2),85 and the uncoupling occurred in FAO so that ATP 
was generated by glycolysis and not by FAO.86

AML cells rely on fatty acids along with other essential en-
ergy sources for their metabolic needs. FAO was recently shown 
to be essential for leukemic cells in AML,87 for which, notably, 
fructose metabolism, as depicted in Figure 1, would be directly 
supportive.

Reactive oxygen species, fructose, and AML

Reactive oxygen species (ROS) include superoxide and hydrox-
yl free radicals and non-radical oxygen and hydrogen peroxide 
molecules. These molecules are constantly generated by multiple 
normal enzymatic and non-enzymatic reactions in the mitochon-
dria, peroxisomes, endoplasmic reticulum, and the nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase family of en-
zymes in the cell membrane, including during fatty acid metabo-
lism.88,89 ROS, which may be induced by hypoxia, endoplasmic 
reticulum stress, metabolic defects, and oncogenes, can react with 
many cellular constituents and cause oxidative damage, including 
to DNA and proteins. The production of ROS is balanced in the 
normal state by ROS scavengers, which include glutathione, NA-
DPH, transcription factor nuclear factor erythroid 2-related factor 
2 (NRF2), and the effects of tumor suppressor genes and dietary 
anti-oxidants, with NRF2 considered to be a master regulator of 
the intra-cellular anti-oxidant response.89

Like UCP2 in AML cells,85 following an injury to the central 
nervous system, UCP2 decreases ROS production, which would 
otherwise mediate oxidative damage; thereby UCP2 prevents neu-
ronal cell death.85,90 Free fatty acids are increased in ischemic or 
traumatic brain injury and stimulate mitochondrial UCP2 to de-
crease ROS production.

Interestingly, the metabolic state in neuronal injury appears to 
have similarities with AML, with significant alterations in FAO 
and glycolysis reported in conjunction with increased ROS in 
AML.91,92 Moreover, mutated isocitrate dehydrogenase genes 
(IDH1/IDH2), which cause gliomas and AML,9,93 may lead to the 
inability of the mutated cells to neutralize ROS due to depleted 
NADPH in the production of the oncometabolite, (R)-2-hydrox-
yglutarate, by the mutated IDH1/IDH2 enzymes, as previously 
reviewed.93

Fructose and the redox balance in cancer, including AML

Excess dietary fructose has several undesirable metabolic effects 
that include increased ROS production as an underlying effect of 
fructose metabolism.94 In a mouse model it was shown that fruc-
tose caused fibroblasts to transform to mature adipocytes, with 
increased lipid metabolism in adipocytes and generation of free 
fatty acids.95

Glycolysis and the PPP (as illustrated in Figure 2) have essential 
roles in maintaining the anti-oxidant response.88 NADPH, which is Pu
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required to maintain glutathione in the reduced state, is generated 
by the oxidative part of the PPP and the one-carbon serine path-
way.1,2,88,96 A disrupted redox balance between ROS generation 
and anti-oxidants is implicated in the pathogenesis of aging, neu-
rodegenerative and cardiac diseases, and cancer.88 Significantly, 
ROS can cause either proliferation or cell death in cancer, depend-
ing upon the cancer stage, with a pro-oncogenic effect in the earlier 
stages of cancer.97 In addition, multi-faceted effects of the various 
types of ROS serve as specific messengers in different subcellular 
locations, which are only beginning to be understood.96 Increased 
ROS have been observed in both lymphoid and myeloid leuke-
mias, including AML.98 In AML, the NADPH oxidases family 
of enzymes are considered the primary source of increased ROS 
levels.92 As described above, the undesirable effects of fructose 
include the generation of ROS via the various metabolic pathways 
derived from fructose metabolism, including FAO,96 which are vi-
tal for leukemic cells in AML.

ROS may be present intracellularly and extracellularly, includ-
ing in the microenvironment of tumor cells.88 Leukemic cells in 
AML reside in the BM, and the microenvironment of the leuke-
mic cells includes the marrow adipose tissue cells. Therefore, ROS 
in an imbalanced state or excess could affect any elements in the 
tumor cellular microenvironment, including adipose cells in the 
BM. Normally, with increasing age, there is an increase in the BM 
adipose tissue with decreased BM hematopoietic cellularity, and 
AML occurs most commonly in older individuals. It is therefore 
possible that increased ROS might interact with adipose tissue 
cells in the BM by yet undescribed mechanisms and contribute to 
the development of AML.

Normal adult hematopoietic stem cells and leukemia stem 
cells in AML

In 1994, Dr. John Dick’s group transplanted leukemic cells from 
patients with all French-American-British subtypes of AML into 
severe combined immunodeficient mice and identified leukemia-
initiating stem cells (LSC) as the originating cell from which AML 
cells arise.99 The LSC were heterogeneously derived from hemat-
opoietic stem cells (HSC) and are considered the source of relapse 
in AML.100 Therefore, targeting LSC in AML is of significant 
therapeutic interest.

Normal adult HSC in the BM

Normal adult HSC are rare, multipotent cells that are understood 
to reside in a perivascular niche with other cellular and stromal 
elements in the BM microenvironment.101 HSC have the unique 
capabilities of self-renewal to form additional self-renewing HSC 
and differentiation to progenitor cells that further differentiate to 
mature hematopoietic cells. HSC can be long-term or short-term, 
with the former required for complete hematopoiesis after BM 
transplantation. Quiescent HSC have few mitochondria and use 
glycolysis, while progenitor cells have many mitochondria and use 
oxidative phosphorylation for their energy needs.102

Long-term HSC reside in a hypoxic niche and express HIF1-α 
mRNA and protein, which likely stimulates the use of glycolysis 
instead of oxidative phosphorylation for the long-term HSC to 
remain quiescent. This process is necessary for maintaining HSC 
capacity for self-renewal. A low ROS environment is required to 
maintain HSC quiescence, self-renewal, and long-term survival.92 
It has been shown, however, that both quiescent and cycling HSC 

can be hypoxic and express high levels of HIF1-α protein.103

Importantly, HIF1-α finely regulates HSC proliferation and 
differentiation, with lower levels being beneficial for maintaining 
quiescent HSC and higher levels detrimental to HSC,102 similar to 
the regulation by HIF in other cells.10 However, since the oxygen 
thresholds at which the HIF system activates are cell-type-specif-
ic,10 the optimal level of HIF1-α for maintaining HSC and the oxy-
gen threshold at which HIF1-α activates are likely to be different 
for HSC than other types of cells. Further, in addition to HIF1-α, 
the maintenance of stem cells crucially depends upon other factors, 
including forkhead box O (FOXO), liver kinase 1 (LKB1), and 
LIN28 (as reviewed previously),104 and the NADPH oxidases.92

The balance between quiescence and proliferation in HSC de-
pends critically on nutrient-sensitive pathways, including FAO, 
glutaminolysis, and the phosphoinositide 3-kinase (PI3K)-protein 
kinase B (AKT)-mammalian target of rapamycin (mTOR) path-
way that relies on growth factors, glucose, and amino acids for its 
activation.104 Of interest, in this regard, FAO has a critical role in 
the maintenance of HSC.105 Notably, other stem cells, including 
adult neural stem/progenitor and intestinal stem cells, also require 
FAO for maintenance (as previously reviewed).106 The metabolism 
of long chain fatty acids, comprised of 14–20 carbons, is regulated 
by a nuclear peroxisome proliferator-activated receptor (PPAR) 
delta (PPARδ), which represents one of three human isoforms, α, 
β/δ (referred to as δ), and γ, of PPAR. In mice, ppard-deletion in 
HSC was shown to profoundly impact long-term post-transplan-
tation repopulating capability, and conversely, activating PPARδ 
improved HSC function.105

PPARγ is primarily expressed in adipose tissue with essential 
roles in the regulation of adipocyte differentiation, adipogenesis, 
and lipid metabolism. PPAR agonists have been investigated as 
therapeutic agents in metabolic syndrome and non-alcoholic fatty 
liver disease. However, the function of PPARγ is unclear in the 
context of BM adipose tissue and hematopoiesis. Nonetheless, BM 
adipocytes differ from adipocytes at other adipose tissue sites and 
secrete stem cell factor, which is important for HSC maintenance. 
Recent studies indicate that stem cells and different types of pro-
genitor cells may reside in spatially different niches. Single cell 
sequencing studies of mesenchymal stromal cells in the BM have 
identified distinct gene expression profiles for perisinusoidal and 
periarteriolar stromal cells, suggesting that each type of cell was 
poised for adipogenesis or osteogenesis, respectively (reviewed in 
reference).107

The effects of various stressors on the interactions between HSC 
and their stem cell niche in the BM are being studied (reviewed in 
cited references).107,108 Restricted caloric intake has been shown to 
have a beneficial effect in maintaining HSC quiescence; however, 
the mechanisms underlying this effect are not yet understood.107

LSC in AML

In contrast with normal HSC that use glycolysis, established LSC 
require mitochondrial oxidative phosphorylation. LSC isolated 
from primary human AML specimens based on their functional 
properties showed low ROS levels and were characterized as quies-
cent with low energy production compared to higher ROS levels in 
the bulk AML cells.109 Those low-ROS LSC overexpressed BCL2, 
an anti-apoptotic member in the BCL2 family of proteins, which, 
when inhibited, eradicated the LSC, indicating the importance of 
mitochondrial metabolism in LSC in primary AML.109 Subse-
quently, Pollyea et al. analyzed LSC in pre- and post-treatment 
samples from 33 single institution, newly diagnosed, elderly AML 
patients effectively treated with venetoclax, a selective inhibitor 
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of BCL2, combined with a hypomethylator, azacytidine.110 LSC, 
identified by low-ROS and mass cytometry phenotype (CD34+, 
CD38−, Lin−, CD123+), were rapidly eliminated after therapy. The 
post-treatment LSC showed a disrupted TCA cycle and reduced 
oxidative phosphorylation.110 Notably, venetoclax alone did not 
suppress oxidative phosphorylation,110 in contrast with the find-
ings from their earlier pre-clinical study.109

Interestingly, in a murine model of blast crisis of chronic my-
eloid leukemia (BcCML), LSC located within gonadal adipose tis-
sue showed an inflammatory gene expression profile.111 The inves-
tigators isolated and analyzed cells from the murine gonadal and 
inguinal adipose tissue, spleen, BM, and peripheral blood. Only 
gonadal adipose tissue showed the presence of leukemic cells and 
LSC, with the latter characterized by the Sca-1+/Lin− phenotype 
and a pro-inflammatory profile. Moreover, severe fat atrophy was 
observed due to lipolysis in the leukemic gonadal adipose tissue, 
with increased levels of free fatty acids; inguinal fat atrophy was 
also noted, despite a low level of leukemia cells in that site. Fur-
ther, in this murine BcCML model, surface CD36 was not detected 
on normal HSC, but two metabolic types of LSC were identified 
based on surface CD36 expression. Both CD36+ and CD36− LSC 
were functionally similar in the ability to generate leukemic cells, 
but CD36+ LSC had a high FAO rate, low ATP, and depended more 
on glycolysis, similar to quiescent HSC. In the same study, the 
leukemic cells from 4 of 8 human BcCML and 4 of 8 human AML 
specimens also showed CD36+CD34+ cells among the CD34+ 
cells, with increased FAO in the CD36+ cells. However, LSC had 
a higher FAO rate than the leukemic cells or the HSC among the 
studied cells, and the presence of CD36 on LSC in the gonadal 
adipose tissue protected the LSC from chemotherapy.111

In the same murine model, LSC in the liver, a common extramed-
ullary site for leukemic infiltration, showed increased pathways 
for lipid metabolism in the absence of an inflammatory profile.112 
The metabolome of cells isolated from the liver and BM showed 
abundant polyunsaturated fatty acids in the hepatic lin− leukemic 
cells. Significantly, culturing LSC with polyunsaturated fatty acids 
increased the number of LSC, with linoleic acid being the most 
mitogenic fatty acid. In mice with hypercholesterolemia, reduced 
high-density lipoproteins (HDL), and slightly increased low-densi-
ty lipoprotein (LDL)/very low-density lipoprotein (VLDL) levels, 
the hepatic LSC transcriptomic profile related to metabolism was 
distinct from that of BM LSC. In those mice, there was increased 
hepatic LSC expression of LIPG, which encodes for a lipase that 
metabolizes the phospholipids in HDL to lysophosphatidylcholine 
and fatty acids, thereby decreasing the HDL level. Overexpression 
of LIPG (approximately twice normal) in vitro led to increased 
linoleic acid and increased leukemic cell proliferation, which was 
further stimulated by adding HDL. The LSC with overexpressed 
LIPG showed a higher ROS level. Moreover, LIPG was overex-
pressed in post-chemotherapy BM LSC. These findings showed 
that hepatic LSC used HDL to proliferate, and LIPG protected the 
BM LSC from chemotherapy.112

HIF1-α and LSC in AML

In a mouse model derived from human AML samples, CD34+CD38− 
LSC showed increased expression of HIF1-α and GLUT1 mRNA 
and increased accumulated HIF1-α protein. Echinomycin, a 
HIF1-α inhibitor, effectively eliminated the LSC that also lost their 
capability to form AML colonies.113 AML human samples and cell 
lines also overexpress HIF1-α, with elimination of that expres-
sion by the HIF1 inhibitor, 2-methoxyestradiol (2ME2), which 
causes apoptosis of leukemic cells by the mitochondrial apoptosis 

pathway without affecting normal hematopoietic cells.114 Interest-
ingly, in AML cell lines exposed to 2ME2, the expression of the 
anti-apoptotic BCL2 and HIF1-α decreased simultaneously with 
increased expression of the pro-apoptotic BCL2 family members. 
Since HIF1-α reduces ROS generation, ROS levels also increased 
and mediated the 2ME2-induced apoptosis of leukemic cells.114

In a study of 60 AML patients compared with 20 normal con-
trol individuals, HIF1-α mRNA was significantly overexpressed 
in leukemic cells, with higher levels in extra-medullary (hepato-
splenic and lymph node) leukemic infiltration. Particularly, AML 
patients with higher HIF1-α levels did not achieve complete remis-
sion, and higher HIF1-α levels correlated (p < 0.001) with shorter 
disease-free survival.115

Further, analyses of 183 previously characterized, French-
American-British-classified patients with low- and high-risk 
MDS, a pre-leukemic disease that frequently progresses to AML, 
revealed HIF1 activation as the underlying pathogenetic mecha-
nism in MDS. Echinomycin improved the dysplastic features of 
MDS and prolonged survival in mice.116 HIF1 is also a potential 
therapeutic target in JAK2V617F-positive chronic myeloprolifera-
tive neoplasms,117 which may also progress to AML. Moreover, 
HIF1-α is crucial for glioblastoma multiforme, a lethal brain tu-
mor, and echinomycin effectively inhibited tumor growth and im-
proved survival in a glioblastoma mouse model.118 These studies 
indicate that HIF1 inhibitors should be pursued for treating pa-
tients with AML, including myeloid neoplasms that may progress 
to secondary AML, and non-hematologic cancer.

Future directions

This review suggests that the metabolism of normal adult HSC is 
likely to be very finely regulated. A focus on normal HSC in the BM 
microenvironment and the effect of any suspected etiologic agents, 
including excess dietary fructose intake, on the normal homeostatic 
milieu will likely answer questions surrounding the origin of AML. 
Figure 3 depicts the potential role of excess fructose at the origin 
of AML and after overt AML has developed. Future collaborative, 
multidisciplinary studies are needed to answer the following ques-
tions: (1) What are the interactions and role of the adipose tissue 
in the BM microenvironment in the initial development of AML 
compared with the normal BM with adipose tissue; (2) What are the 
targets and interactions of the specific types of ROS within the BM 
microenvironment where HSC and LSC reside, including with the 
adipocytes in the normal and leukemic BM (keeping in mind that 
these are likely to be different at the time of the initial leukemo-
genic events and at relapse after AML has already developed); (3) 
Can excess fructose, with or without excess body weight and other 
measures of adiposity, lead to AML in the BM (under any condi-
tion); (4) Based on reviews for dietary consumption of fructose in 
African Americans21 and increased risk of AML in Blacks,64 does 
ethnicity have a role in fructose intake and metabolism and AML 
occurrence, and is there a higher risk of AML in the African Ameri-
can population; (5) Can excess fructose, with or without obesity, 
lead to AML in the presence of germline mutations that may be 
familial and predispose to AML (reviewed in the reference);119 (6) 
Can an intervention in dietary and lifestyle factors, including re-
striction of excess fructose intake, in individuals with or without ex-
cess body weight and other measures of localized adiposity, prevent 
the occurrence of AML; (7) Therapeutically, can HIF1 inhibitors 
improve patient survival in AML; and (8) Do GLUT1 or GLUT5 
inhibitors impact outcome in AML patients?

Continued development in technological advancements and 
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new and safe therapeutic agents will hopefully pave the way for 
the necessary breakthroughs to elucidate the origin of AML to en-
able the prevention of malignancy and cure AML and related dis-
eases in the future.

Conclusions

This article describes how excess fructose provides abundant en-
ergy sources and potentially provides the substrates for the bio-
synthesis of the cellular constituents essential for malignant cells 
to originate and proliferate. The evidence reviewed in this article 
for the etiologic role of fructose metabolism in AML collectively 
warrants further investigation. If ascertained that excess fructose 
can cause AML, then, importantly, there would be a simple way 
to prevent this deadly disease. Crucially, studies along this line of 
investigation could elucidate the etiologic mechanisms that may 
lead to urgently needed therapies to improve long-term patient 
survival in AML. The evidence to date indicates that HIF1 and 
GLUT5 inhibitors could be pursued in clinical studies to evaluate 
their therapeutic impact on AML patients.
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